
Fantastic
Feature
Flags 🚩

Paul Heasley | Engineering Guild 28 Sep 2022



A mechanism for easily enabling or 
disabling certain system behaviour

What is a feature flag, feature toggle, feature switch



Simplest feature flag is just an if statement

let auth

const useCloudentity = true

if (useCloudentity) {

 auth = cloudentityAuth()

} else {

 auth = cognitoAuth()

}

But this requires a developer to 
change and deploy it.



Ideally we want run-time configurability

Allows us to turn things on and off 
without code changes.

Allows non-engineers to flip the 
switch.



We might also want complex behaviour

{

   "name": "myFeature",

   "description": "A feature that's only enabled for some retailers or users",

   "enabled": true,

   "value": {

       "retailers": [ "retailer1", "retailer2" ],

       "users": [ "user1", "user2" ],

       "expires": "2018-01-01T00:00:00Z"

   }

}



There are many 
hosted services

But they can be expensive 🤑 and 
add another possible bottleneck



So we built our own

Read more in the Feature Flags Design Doc



It’s just an S3 JSON file with CloudFront

{

 "features": [

   {

     "_createdAt": "2022-09-06T02:00:57.278Z",

     "_updatedAt": "2022-09-06T02:03:23.906Z",

     "description": "Datadog Realtime User Monitoring sample rate @ 

$1.80 per 1K.",

     "enabled": true,

     "name": "datadogRumSampleRate",

     "type": "number",

     "value": 10

   }

 ]

}



But it’s very flexible

Supporting boolean, number or 
string types

Or custom JSON values



There’s even a React SDK for consuming it

import { useFeatures } from "src/hooks/use-features"

const { features, getFeature, loading } = useFeatures()

// if loading is true, features are still loading, provide some default behaviour

// Access a simple feature value if enabled

const useCloudentity = getFeature("useCloudentity")

if (useCloudentity) {

   // Login with Cloudentity

}

// Or loop through all features and get the whole feature object

const useMailgun = features.find(f => f.name === "useMailgun")

if (useMailgun.enabled === true) {

   // Send emails with Mailgun

}



It’s waiting for a backend SDK

As it’s just an S3 file, it’s easy to read from it within a lambda or even trigger 
events when the S3 file changes.

Ideally we want to build a caching mechanism if a lambda is reading it 
frequently.

Lambda extensions may be a good solution to pre-load feature flags, similar to 
this Secrets Manager solution.

https://developer.squareup.com/blog/using-aws-lambda-extensions-to-accelerate-aws-secrets-manager-access/


Currently your dev feature file is empty

To enable a feature you need to create a new feature with the correct name and 
type, e.g. useCloudentity: boolean.

A better approach would be a way to sync production features as defaults. We 
still need to work out a solution to this.

��



Why feature flags?
Here’s 6 use cases



Use case 1: Continuous integration & delivery

Feature flags restrict access to certain features or code that is not ready for 
general availability.

They enable us to deploy even when we’re not ready to release.

Continuous integration

Code should not live outside of the 
main branch for long.

Continuous delivery

Code should not live outside of the 
production for long.



Long running feature development

Don’t

● Create a complete copy of the service (it will get out of sync)
● Create a long lived feature branch

Do

● Create a feature flag and commit incrementally and often
● Branch by abstraction



Use case 2: Gradual release

● Testing in production

● Canary testing

● Dark launching



Use case 3: Timed release

E.g.

● Before a high heat draw

● Coordinating rebrand / marketing release

● Comply with new regulations (e.g. new tax rates)



Use case 4: A/B testing

A/B testing is the practice of serving 2 different variations of a system (e.g. UI 
change) to a random distribution of the population and comparing the 
performance.

Services like Split.io excel at this feature, and it usually accounts for 80% of the 
cost but it used 2% of the time*.

* Numbers derived from Paul’s very objective gut feel



Use case 5: Circuit breakers

Circuit breaker feature flags allow us to dial down, or turn off functionality (e.g. 
Datadog RUM sampling).

��



Use case 6: Business features

Using feature flags we can support multiple customers / tenants with varying 
configurations in a single code base.



Best practices

Feature flags come at a maintenance cost.

They should be used sparingly and cleaned up as soon as possible.

They should include a description and expiry date when they can be removed.

featureflags.io (by LaunchDarkly) is a great resource.

https://featureflags.io/



